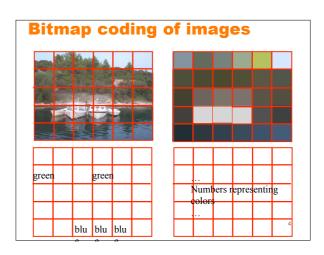
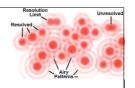


Vincenzo Della Mea
Medical Informatics, Telemedicine & eHealth Lab
University of Udine, Italy

32nd European Congress on Cytology, Venice, 1-4 October 2006 Seminar on Digital Cytology (A.Bondi, M.Boon, V.Della Mea, U.Schenk)


#### **Outline**

- Basic imaging concepts
- The digital image
- The digital slide
- Practical aspects


2

#### **Basic imaging concepts**

Bitmap coding Resolution



#### Resolution



Resolution: least measurable distance between two points

Depends on wavelength v objective' numerical aperture (NA), which is related to magnification:  $R = \frac{v}{2 \cdot NA}$ 

If v=550 nm (by convention, green light), NA=1.4 (maximum, oil immersion), then R = 0.196  $\mu$ 

#### **Optical resolution**

- In practice 0.2 μ is the least detail visible at the microscope
  - NA=1.4 means 100x, oil immersion
- Other magnifications?

| Magnification | NA        | Resolution (µ) |  |
|---------------|-----------|----------------|--|
| 5x            | 0.1-0.2   | 2.8-1.4        |  |
| 10x           | 0.25-0.45 | 1.1-0.6        |  |
| 20x           | 0.40-0.75 | 0.7-0.37       |  |
| 40x           | 0.65-0.95 | 0.42-0.29      |  |

#### **Resolution and sampling**

- When acquiring, we should take into account the Shannon-Nyquist theorem
  - (sampling frequency at least double than signal frequency of interest)
- In practice: at least two pixels per resolved point
- I.e., 1 pixel every 0.1 μ (~, at 100x oil immersion)

#### Other magnifications: an example

Magnification: 40xTypical NA 0.70,

Field of View : 200x150 micron

How many pixels do we need?

I Optical resolution: 0.550 / 2 \* 0.70 = 0.393  $\mu$ 

Acquisition resolution: 0.196  $\mu$  ~ 0.2  $\mu$ 

Minimum number of needed pixels:

200/0.2, 150/0.2= **1000 \* 750** = 0.75 Mpixel camera

8

#### The digital image

### Acquisition Sensors

### Acquisition: CCD

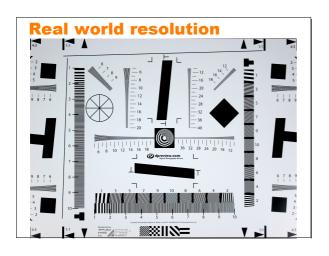
- Matrix of light-sensitive elements
- Each element (well) collects photons over a fixed time; their count is proportional to the amount of light hitting the well
- The number of photons is then sent to the computer (which could be the internal camera processor)

10

#### **CCD:** size

- CCD size:
  - Measured in inches (fraction of), which do not correspond to the real size of the sensor
  - 1/8" 1
- Element size: some square micrometer
- Number of elements: the well known MegaPixels
  - Millions of elements, related to CCD and element size

(Dimensions in Millimeters)
1/2 Inch
1/3 Inch
8
8






#### **CCD** and noise

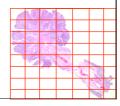
- Many noise sources
- Thermal noise: the sensor body at temperature > 0°K, emits moving electrons that hit the wells as if they were photons
  - Dark areas will not be really black
- electronics
- If the element is very small, it will not receive many photons so small dynamic range
- Element size (CCD size) is important!

12



#### The digital slide

## Digital slide Is a digital copy of the traditional glass slide, Obtained acquiring the whole slide, or just parts of area substantially larger than the view field Aim: to capture all diagnostic information available/useful


#### An example: eSlide

- We developed a digital slide acquisition system: eSlide
  - MITEL, University of Udine, Italy
- The software part is freely available at http://www.eslide.net
  - Sample cases too
- Hardware supported until now:
  - l analog cameras + Scion Firewire cameras
  - Märzhäuser LSTEP and Prior Optiscan stages
- Let's look at the eSlideScope...

#### **Acquisition**

- Slide scanners: fully automatic devices
  - Aperio, Olympus, Zeiss, ...
  - Linear CCD sensor (like flatbed scanners)
- "traditional" robotized microscopes
  - Bacus, eSlide, ...
  - I Matrix scanning of the slide





#### **Acquisition techniques**

- Top-down systems:
  - A low magnification overview of the slide is acquired, on which interesting areas are acquired at higher magnification. Inside the latter, further interesting areas may be acquired at even higher magnification.
- Bottom-up systems:
  - All the slide, or a significant part of it, is acquired at high magnification; from this, lower magnifications are automatically calculated

18

## Top-down systems PROS: slightly less storage needed, faster acquisition CONS: area pre-selection. supervision needed 1) Acquisition at 2x 2) Acquisition at 20x

# Bottom-up systems PROS: complete glass slide, non supervised acquisition CONS: slow acquisition, large storage needs Calculating 2.5x A) Calculating 5x Calculating 10x Calculating 20x Acquisition at 40x

#### Storage needed

- Let's consider a 1 cm<sup>2</sup> sample (=1x1 cm = 10.000x10.000 µ)
- To store it at maximum optical detail: 100.000x100.000 pixel
  - ~ thousands of traditional images
  - However, 100x, oil immersion
- 40x, 0.70 NA:
  - 50.000x50.000 pixel
  - 7.5 GB, uncompressed
  - <500MB, safely compressed</p>



#### Storage needed/2

|                 | Area               | 100x   | 40x     |
|-----------------|--------------------|--------|---------|
| Small biopsies  | 10 mm <sup>2</sup> | 200 MB | 50 MB   |
| Surgical sample | 1 cm <sup>2</sup>  | 2 GB   | 500 MB  |
| Cytology        | 3 cm <sup>2</sup>  | 3 GB   | 750 MB  |
| PAP             | 9 cm <sup>2</sup>  | 9 GB   | 2.25 GB |

- \* Compression: JPEG 15:1, according to Foran & Meer guidelines;
- \*\* Compression: JPEG 30:1

#### **Unsupervised acquisition**

- Acquisition is unsupervised, so:
- Recognition of non-blank fields
  - The user selects areas of interest,
  - I The system acquires non blank fields inside that areas (tissue finding)
- Autofocus:
  - I The system should focus in some way
    - Real autofocus: used on microscope-based systems, sometimes can fail
    - Interpolated autofocus (i.e, focus on some points, interpolation on other): used on most slide scanners, good mainly for histology, fails when specimen has variable thickness

#### Time needed

- Slide scanners:
  - 20 minutes /1 cm<sup>2</sup>
- Robotic systems:
  - Up to 2 hours / cm<sup>2</sup>
- Where the speed comes from?
  - Mainly but not only in focus system
    - I Slower but apparently more precise on robotic systems
  - European Congress on telepathology:
     "scanners for routine, robotic microscopes when more precision is needed"

#### **Practical aspects**

## Diagnostic performance Use in cytology

#### **Digital images in pathology**

- "Traditional" telepathology:
  - Dynamic telepathology (realtime)
     Robotized microscope driven at distance
  - Static telepathology (store-and-forward)
    - I Selection of microscope images representing a slide
- Digital pathology:
  - I Virtual Microscopy, or whole slide telepathology
    - I Entire slide acquisition, storage and esamination at distance

20

#### Can we use digital images/slides?

- The question can be translated as:
- Are digital images/slides "equivalent" to those we see at the microscope?
  - I.e., do they bring the same diagnostic information?



#### The answer for static images

- Yes (provided that images are technically good)
- Many papers in the last 10 years,
  - Recently: on 1255 cases, AFIP reported 97.3% diagnostic agreement (TP vs. microscope)
    - Williams BH, et al. Clinical evaluation of an international static image-based telepathology service. Hum Pathol. 2001 32:1309-17.
  - (...) all the necessary technology for telepathology is available, there is strong published evidence for a diagnostic accuracy comparable with glass slide diagnosis, in many contexts there is a clear-cut economic argument in favour of telepathology, and that the technique should now be integrated into mainstream diagnostic histopathology.
    - Cross SS, Dennis T, Start RD. Telepathology: current status and future prospects in diagnostic histopathology. Histopathology 2002;41:91-109

#### Selected images and digital slides

- At first glance, it seems that if selected images bring diagnostic information, the whole digital slide will be even more adequate
- ... but there is a subtle difference:
  - Selected images are manually and carefully acquired by an expert pathologist,
  - While the digital slide is automatically acquired
  - I Focus is not guaranteed on every image!

29

#### The answer for digital slides

- Looking at diagnostic agreement: very good
- Looking at details: reports of local failures
  - Gilbertson JR, et al. Primary histologic diagnosis using automated whole slide imaging: a validation study. BMC Clin Pathol. 2006
    - (...) very positive result; however, this does not mean that WSI is as good as a microscope. Virtually every slide had focal areas in which image quality (focus and dynamic range) was less than perfect.
    - (...) 10 of 210 slides showed evidence that "tissue finding" function had failed and that significant areas of the tissue had not been imaged (this usually involved immunohistochemistry slides with light counter staining). In those cases, the technician manually adjusted the imaging window and let the system re-imaged the slide.
- So: automatic, but with human check!

#### **Digital slides in cytology**

- First proposal and experimentation:
  - R.N. Taylor, M. Gagnon, J. Lange, T. Lee, R. Draut, E. Kujawski, CytoView. A prototype computer image-based Papanicolau Smear Proficiency Test, Acta Cytologica (1999) 43: 1045-1051.
- More works on histology than on cytology
  - Due to extra difficulties...

#### **Cytology features**

- Some (technical) features of cytology influence its acquisition and use:
- Focus problems:
  - No section -> variable focus plane
  - Specimen thickness -> information spread on more than one focus plane (fine focusing)
- Very large samples
  - To be thoroughly examined

32

#### **Focus**

- Some slide scanners do autofocus on just some points
  - I Then interpolate focus values for the other fields
  - I This covers only regular trends due to coverslip being not parallel to slide, or regular variations in section thickness
  - Focus can be maintained increasing depth of field (i.e., closing diaphragm)
    - But this decreases resolution!
- Much, much easier on thin layer




#### Sample size

- Visualization time depends on
  - I Training in the use of the software
  - Screen size
    - Field of view smaller than at the microscope
- Time needed for diagnosis: higher than at the microscope (PAP average: 26 min.)
  - Della Mea V, et al. User attitudes in analyzing digital slides in a quality control test bed: a preliminary study. Computer Methods and Programs In Biomedicine. 2006; 82 (2)
  - Inadequate for routine diagnosis, acceptable for training and test

#### The most promising applications

- Teaching and Quality assurance:
- Implementation of QUATE-like tests
  - Possibility of replicating the same slide as many times as needed
    - I Taylor RN et al. CytoView. A prototype computer image-based Papanicolau Smear Proficiency Test. Acta Cytologica 1999; 43:1045-1051.
    - Demichelis F et al. Digital storage of glass slides for quality assurance in histopathology and cytopathology. J Telemed Telecare 2002;8:138-42.
- Tracking of diagnostic path
  - Where the user looked at? Where not?
    - Costello SS et al. Development and evaluation of the virtual pathology slide: a new tool in telepathology. Journal of Medical Internet Research 2003; 5:e11. 35

